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Abstract
Energy drift is commonly observed in reversible integrations of systems of
molecular dynamics. We show that this drift can be modelled as a diffusion
and that the typical energy error after time T is O(

√
T ).

PACS numbers: 45.10.−b, 05.45.Pq

In simulations of conservative systems, the energy H is usually monitored as a check on the
calculation. In symplectic integration of Hamiltonian systems, it is known that the integrator
is very close to the flow of a Hamiltonian system with Hamiltonian close to H, so that one can
give conditions under which the energy error is bounded for exponentially long times [14].
However, in reversible integration [1–3, 5, 7, 8, 10], one typically sees the energy drift away
from its initial value. In this letter we model this drift as a diffusion process, showing that the
expected drift after time T is O(

√
T ).

There are several reasons why one might use a reversible integrator on a conservative
system. First, if the system is Hamiltonian, a symplectic integrator might be prohibitively
expensive. This occurs if one wants to adaptively vary the time step, which can be much
cheaper to do reversibly than symplectically, or if the symplectic structure is noncanonical,
perhaps as a result of a change of variables. See, e.g., the discussion of the Nosé–Hoover
thermostat of molecular dynamics in [2].

Second, if the system is not Hamiltonian but still has a first integral H, then a reversible
integrator is the natural choice of geometric method. One can construct integrators which are
reversible and preserve energy, but they are expensive, typically fully implicit in the dependent
variables and in the (introduced) Lagrange multipliers. It is usually much cheaper to preserve
just the reversibility, which is the dominant property characterizing the dynamics, and merely
monitor the energy.

We consider systems with phase space M and dynamics ẋ = f (x), reversible under the
diffeomorphism R : M → M , i.e. R∗f = −f or f (R(x)) = −TxR · f (x) ∀x ∈ M , and
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with a symmetric first integral H : M → R, i.e. Ḣ = f (H) = 0 and H(R(x)) = H(x).
(H can be any symmetric integral; we are calling it ‘energy’ for illustration.) The integrator, a
diffeomorphism φτ : M → M , which approximates the time-τ flow of f , is also assumed to
be reversible, i.e. φτ (R(x)) = R

(
φ−1

τ (x)
)
. We are interested in the energy drift: for a given

initial condition x0 ∈ M , which we take for convenience to have zero energy, H(x0) = 0,
what is the behaviour of the sequence

{
H

(
φn

τ (x0)
)}

? Extensive numerical evidence suggests
that it is not bounded but wanders erratically: in fact, it looks like a random walk. This is
in stark contrast to the behaviour of general purpose, nonreversible integrators, for which the
energy error increases linearly in time on a suitable time scale. Note that if the vector field f

is Hamiltonian, then the integrator φ is close to symplectic. However, this plays no role in our
analysis and we believe it is irrelevant.

For any orbit {x(t) : t ∈ R}, we have that {R(x(−t))} is also an orbit. If it is the same orbit,
it is said to be symmetric. Otherwise, it is said to be nonsymmetric. Any orbit that intersects
the fixed set {x : R(x) = x} of R is symmetric. Symmetric orbits display typical conservative
behaviour, for example, the eigenvalues of symmetric fixed points have the same symmetry
as those of Hamiltonian systems, and there is a KAM theorem for symmetric quasiperiodic
orbits [9, 15]. Nonsymmetric orbits, on the other hand, cannot ‘see’ the reversing symmetry
and can have any dynamics, including asymptotically stable fixed points and strange attractors
(whose image under R must be a strange repellor). This is commonly observed only in
low-dimensional systems [9, 15, 6]. For typical high-dimensional systems such as those of
molecular dynamics, the phase space consists of an ergodic ‘sea’ containing tiny islands of
regular (e.g. quasiperiodic) orbits. Since there is no known mechanism which could keep a
chaotic orbit in the sea bounded away from the fixed set of R, these orbits are believed to be
generally symmetric.

(If the system has nonsymmetric first integrals I : M → R
k , then only orbits starting

on the fixed set {x: I (x) = I (R(x))} of I can possibly be symmetric. Therefore, we assume
that the system either has no nonsymmetric integrals, or the system and integrator are both
restricted to the fixed set of I. Momentum and angular momentum are examples of such
nonsymmetric integrals.)

By backward error analysis [5, 14], the integrator φτ is (exponentially close to) the time-τ
flow of the modified vector field

ẋ = f̃ (x) = f (x) + τpfp(x) + O(τp+1)

where f̃ and fp are R-reversible. Here p is the order of the method. Therefore, the energy
evolves according to

Ḣ =: h = if̃ dH = if dH + τpifp
dH + O(τp+1) = τpifp

dH + O(τp+1).

H is symmetric by assumption, so Ḣ is antisymmetric:

Ḣ ◦ R = R∗if̃ dH = iR∗f̃ R∗ dH = i−f̃ d(R∗H) = −if̃ dH = −Ḣ . (1)

Under these circumstances the evolution of H for a symmetric ergodic orbit can be
modelled as a diffusion process as in [11]. The approximation is valid for time scales which
are long enough that one can average over the fast motion in x but short enough that the total
energy drift is small. On such an intermediate time scale we think of the orbit as consisting of
a fast motion on an energy surface (which plays the role of the ‘angles’ for a diffusion process)
and a slow drift in H (which plays the role of the action) transverse to this surface.
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We now make the following key assumptions: (i) the flow of f̃ is ergodic on an invariant
set A ⊂ M with respect to an invariant measure µ and (ii) the set A is symmetric. The measure
is necessarily symmetric. Then, we have (recalling Ḣ = h)

lim
T →∞

H(T )

T
= lim

T →∞
1

T

∫ T

0
h(x(t)) dt =

∫
A

h(x)µ =
∫

R◦A
(R∗h)(x)R∗µ =

∫
A

−h(x)µ = 0

since the integrand is odd and the measure µ is invariant with respect to R. We write
〈h〉 := ∫

A
hµ for the spatial average of a function.

That is, the mean energy error is zero. For each positive contribution to Ḣ at x say, there
is a negative contribution at R(x) which is visited equally often. The behaviour of H therefore
looks something like a random walk with mean zero, except that the deterministic nature of
x(t) means that (as typical in these situations) the ‘walk’ is more autocorrelated than a true
random walk. The fast motion in x can be averaged over to give the rate of diffusion of H [4]:

lim
T →∞

H(T )2

T
= lim

T →∞
1

T

(∫ T

0
h(x(t)) dt

)2

= lim
T →∞

1

T

∫ T

0

∫ T

0
h(x(t))h(x(u)) du dt

= lim
T →∞

1

T

∫ T

0

∫ T −t

−t

h(x(t))h(x(t + s)) ds dt =
∫ ∞

−∞
〈h(x(0))h(x(s))〉 ds

which is the integral of the correlation function

bh(s) := 〈h(x(0))h(x(s))〉.
If the flow is mixing, then

lim
s→∞ bh(s) = 〈h〉2 = 0

so that, provided the correlations are integrable, we have |H(T )| = O(
√

T ). In fact, it is
believed that one often has (e.g. for many Anosov systems) exponential decay of correlations,
namely bh(s) � C e−s/k for some C, k > 0, although the precise conditions required to ensure
this are not known [4, 12].

We can now check the time scale on which the result is valid. For a method of
order p, h = O(τp) so |H(T )| = O(

√
T τp) and we have good mixing but small drift

for k � T � τ−2p. (For longer times, the diffusion rate may change as x moves onto
different energy surfaces.) On the other hand, if the simulation is required to estimate an
observable of variance σ 2 to within an error ε, it must be run for time T ∼ kσ 2/ε2, so that the
energy drift typically is indeed relevant.

The introduction of the modified vector field f̃ is not necessary. Working directly on the
integrator, the increment �H = H(φτ (x)) − H(x) is odd, not under R, but under R ◦ φ:

�H ◦ R ◦ φτ = H ◦ φτ ◦ R ◦ φτ − H ◦ R ◦ φτ = H − H ◦ R ◦ φτ = −�H.

If the map φτ is ergodic on an R-invariant set with respect to an R-invariant measure, then the
measure (being φτ -invariant by assumption) must also be R ◦φτ -invariant. The argument then
proceeds as before: the spatial average of �H is zero and the mean energy drift is zero.

There is one important case in which the correlation bh(s) is not integrable. If the orbit
x(t) is quasiperiodic then bh(s) is quasiperiodic. In this case, however, the energy error H(T )

is the integral of a quasiperiodic function h(t) with mean zero, and hence is bounded for all
time. In this case, we expect to observe bounded energy errors for all time. This is also
observed in reversible integrations when the orbit is quasiperiodic.

Also, if the integrator in fact preserves a quantity which is close to H on the orbit, such
as the modified energy of a symplectic integrator, then of course there will be no energy
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drift. The above argument is still valid, but in this case we will have limT →∞ H(T )2/T =∫ ∞
−∞ bh(s) ds = 0.

While we have no way of checking whether the orbit is ergodic on a symmetric set, we
believe that this argument does describe the mechanism of energy drift. If the orbit were not
symmetric, there is no reason for 〈Ḣ 〉 to be zero. When integrating a (nonsymmetric) strange
attractor, we expect that one would observe the linear growth of energy errors.

Example. Nonholonomic mechanical systems form a natural class of systems which are
reversible and energy-preserving but not Hamiltonian. We illustrate the typical O(

√
T ) energy

drift by a reversible integration of a nonholonomic system. We consider the configuration
space R

2n+1 with coordinates q = (x, y1, . . . , yn, z1, . . . , zn), conjugate momenta p =(
px, . . . , pzn

)
, energy

H = 1

2

(
‖p‖2

2 + ‖q‖2
2 + z2

1z
2
2 +

∑
i

y2
i z

2
i

)
,

and a single nonholonomic constraint

f (q)T p = 0, f (q) = (1, 0, . . . , 0, y1, . . . , yn)
T .

The equations of motion are

q̇ = Hp = p, ṗ = −Hq + λf.

It can be checked that Ḣ = 0 and that the system is reversible under (q, p) �→ (q,−p).
The following integrator is second order, reversible and, because of the simple constraint,

explicit [13]. Given initial conditions (qn, pn) satisfying the constraint f (qn)
T pn = 0, we

calculate

q̃ = qn + 1
2τpn

pn+1 = pn + τ(−Hq(̃q) + λf (̃q))

qn+1 = q̃ + 1
2τpn+1

(2)

where the Lagrange multiplier λ is chosen so that f (qn+1)
T pn+1 = 0 (it can be determined

explicitly in this example). As far as we can tell, this system does not preserve any symplectic
structure.

We have taken n = 3 (so the phase space is R
14) and 10 000 initial conditions roughly

equally spaced on the energy surface H(0) = 3.06. The results are shown in figure 1 for
two different time steps, τ = 0.02 and τ = 0.05. To detect the rate of energy drift, we have
calculated the variance σ 2(T ) of the 10 000 energy errors and scaled out the expected O(τ 4)

dependence on the step size. We do indeed then see a dominant O(T ) increase in the variance.
For this method on this energy surface, we can say that the energy error will be approximately

|H(T ) − H(0)| ∼ σ(T ) ∼ 0.01τ 2
√

T .

The diffusion rate depends strongly on the energy, because of the quartic nonlinearities in H.
In fact, as H → 0, the system becomes integrable and no energy drift is seen; the diffusion
rate is found to vary approximately as ‖q‖4.

We repeated this calculation using the fourth-order reversible integrator φ2
ατφ(1−4α)τ φ

2
ατ

where α = 1/(4−41/3) and φτ is the second-order method used above. Again, O(
√

T ) energy
drift was seen; numerically, for this fourth-order method on H(0) = 3.06,

|H(T ) − H(0)| ∼ 0.003τ 4
√

T .
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Figure 1. Energy drift on H(0) = 3.06 for the reversible integrator (2). (a) The observed energy
error for 100 different initial conditions with time step τ = 0.05 integrated up to time T = 50 000.
One typical simulation is singled out in bold. (b) The variance σ 2(T ) of the energy errors for
10 000 different initial conditions integrated up to time T = 50 000 for two different time steps,
scaled by their expected τ 4 dependence on the time step. The growth is roughly linear in time and
the two results are almost indistinguishable. (c) The residual variance from (b) with the expected
linear trend subtracted. Only a relatively small nonlinear behaviour remains.

(This figure is in colour only in the electronic version)

As another example we considered the family of systems

q̇ = p, ṗ = −∇V (q) + εf (q)g(p), (q, p) ∈ R
2n

where V = ‖q‖2/2 +
∑n

i=1(qi − qi+1)
4/4 (setting qn+1 = q1) and g(p) = p1(p2,−

p1, 0, . . . , 0). Because pT g(p) = 0, the system preserves energy 1
2‖p‖2 + V (q) for all

f ; and because g(p) = g(−p), it is reversible for all f . When the system is integrated by a
second-order splitting method (with the subsystem q̇ = 0, ṗ = εf (q)g(p) integrated exactly),
energy diffusion is observed with a diffusion constant proportional to ετ 2, which is a measure
of the amount by which the integrator fails to be symplectic. The diffusion constant increases
markedly with the dimension n.
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